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Abstract 

The thermal diffuse scattering contribution to the 
absorptive potential in high-energy electron diffrac- 
tion is calculated in the form of an absorptive contri- 
bution to the atomic form factor. To do this, the 
Einstein model of lattice vibrations is used, with 
isotropic Debye-Waller factors. The absorptive form 
factors are calculated as a function of scattering vector 
s and temperature factor M on a grid which enables 
polynomial interpolation of the results to be accurate 
to better than 2% for much of the ranges 0-< Ms 2<- 6 
and 0_< M_<2/~2. The computed values, together 
with an interpolation routine, have been incorporated 
into a Fortran subroutine which calculates both the 
real and absorptive form factors for 54 atomic species. 

I. Introduction 

Since the work of Hashimoto, Howie & Whelan 
(1962) and Humphreys & Hirsch (1968) it has become 
almost universal practice in electron-diffraction 
calculations to assume that the absorptive potential 
V'(r) is one tenth of the real part V(r). In terms of 
the Fourier coefficients of the potential this implies 
that the overall coefficient wt°t _g can be written 

VtOt= Vg+iV'g=(l+O.li)Vg (1) g 

where Vg and Vg are the coefficients of V(r) and V'(r) 
respectively, for reciprocal-lattice vector g. This early 
work referred almost exclusively to primitive crystal 
lattices where Vg is a monotonically decreasing func- 
tion of g. However, this has not stopped the same 
10% rule being applied to complex structures where 
the Vg show no such systematic trend and it is by no 

means clear that the Vg should follow the Vg. One 
example of this is for non-centrosymmetric crystals 
where both Vg and Vg have an amplitude and a phase. 
The 10% rule assumes that the phases of the two are 
the same, but there is no reason in principle why this 
should be the case, and a phase difference can lead 
to interesting and observable effects (Gevers, Blank 
& Amelinckx, 1966; Bird, James & King, 1989; Bird, 
1990). With electron microscopy becoming increas- 
ingly quantitative, both in high-resolution imaging 
(e.g. Cowley & Smith, 1987) and convergent-beam 

diffraction (e.g. Zuo, Spence & O'Keeffe, 1988; Bird, 
James & Preston, 1987; Zuo, Spence & H0ier, 1989) 
it is important to know whether or not it matters to 
include absorption more rigorously. This is difficult 
to assess unless we have a reliable method of includ- 
ing absorption which can be applied to a variety of 
materials and types of calculation. It is the construc- 
tion of such absorptive potentials that is addressed 
in this paper. 

A fully quantitative analysis of absorption is very 
difficult (e.g. Dederichs, 1972) and this is the basic 
reason why the 10% rule is still used. In principle one 
has to treat all the possible excitation processes 
(phonons, plasmons, single-electron transitions, etc.) 
which can scatter the fast electrons out of the Bragg 
beams and into the diffuse background. The resulting 
potentials are non-local and, unlike the correspond- 
ing real potential, cannot in general be constructed 
from individual atomic contributions. Instead, one 
would have to calculate separate absorptive potentials 
for every material of interest, which would be based 
on, for example, first principles calculations of the 
electronic structure or the phonon spectrum. This is 
clearly unrealistic in practice. However, there is a 
number of simplified models of diffuse and inelastic 
scattering processes which do lead to a formulation 
of the absorptive potential in terms of atomic contri- 
butions (e.g. Radi, 1970). One is the Einstein model 
for thermal diffuse scattering (TDS). Here, instead 
of using a realistic phonon model which includes 
correlation between atomic motions, it is assumed 
that each atom vibrates independently of the others. 
In this paper we follow the standard view (e.g. Radi, 
1970; Dederichs, 1972) that TDS is usually the most 
significant absorption process, particularly for the 
important V~#o. Electronic scattering processes also 
contribute to these coefficients, particularly at lower 

temperatures (Radi, 1970), but their major contribu- 
tion is to V~. This coefficient has little effect on the 
form of an image or a diffraction pattern because it 
uniformly attenuates all the Bragg beams, and 
absolute intensities are rarely important. As far as 
realistic simulations are concerned, all we need are 
the g ~ 0  coefficients, and these are dominated by 
TDS. 

Within the Einstein model, and using isotropic 
Debye-Waller factors, the TDS contribution to the 
absorptive potential coefficients can be written (Hall 
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& Hirsch, 1965; Radi, 1970; Buxton, 1978) 

h 2 2h 4rr 
V'g- -2m---oo /3moC a ~ exp ( - i g .  r'`) 

x f d2s'f'` ( s' ) f ~ ( s - s ' )  {exp ( -M'`s  2) 

- exp  (-M,,s '2) exp [ - M ' ` ( s -  s')2]}, (2) 

where mo is the electron rest mass,/3 is the velocity 
ratio v~ e, K labels the atoms within the unit cell with 
position vector r'`, elastic form factor f'` and tem- 
perature factor M'`, and £2 is the unit-cell volume. 
The equivalent formula for the Fourier components 
of the real potential is 

/ i  2 4rr 
Vg= 2~r~o /2 .~. exp (-ig.r~)f~(s) exp (-M'`s2), 

(3) 

where s -- s.  In (2) and (3) the arguments of the form 
factors are written as s to make these consistent with 
the notation of the standard tabulation (Doyle & 
Turner, 1968). s and g are related by 

s = g/4rr (4a) 

and with Debye-Waller factors in the form 
exp (-M'`s2), M~ is related to the mean-squared 
thermal vibration amplitude u 2 by 

M~ 8 2 2  = rr u~. (4b) 

By comparison of (2) and (3) it follows that we may 
define an absorptive form factor f ' (s ,  M) as 

f ' (s ,  M ) -  2h I /3moc dEs ' f~(s ' ) f ' ` (s -s ' [ )  

x {1 - e x p  [-2M'`  ( s '2-  s.s')]}, (5a) 

which, with the change of variables s ' ~  s /2+s ' ,  may 
be written in the more symmetrical form 

f ' ( s , M ) -  2h 2 s'  mocld'  (I I) tl  '1) 
x{1-exp[-2M'`(sa-s2/4)]}. (5b) 

Combination of (3) and (5) gives the total potential 
coefficient 

h 2 
v t o t  = _ _ _  4rr 
--g 2mo g2 . .  exp (- ig . r ' ` ) [ f~(s)  

+ / f ' ( s ,  M)]  exp (-M~s2). (6) 

Note that we have chosen to extract the Debye-Waller 
factor exp (-M'`s  2) from our definition of the absorp- 
tive form factor (5). This has no physical sig- 
nificance - it is purely to provide the convenient form 
of (6), where the familiar elastic form factor has been 
replaced by an overall form factor ( f +  if'),,. It is also 
important to note that V t°t depends on the accelerat- 

ing voltage through the 1//3 factor in (5). This is in 
addition to the overall factor of y (=m/mo)  which 
multiplies the potential coefficients in dynamical 
diffraction calculations and which takes account of 
the relativistic increase of electron mass (e.g. 
Humphreys, 1979). 

Equations (5) and (6) provide a prescription for 
including TDS absorption in any diffraction calcula- 
tion because the form factors are all atomic properties 
and are therefore transferable between different 
materials. The absorptive form factor (5) is a function 
of only two variables, s and M, and it is therefore 
feasible to tabulate it for all atomic species. Previous 
workers have applied the equivalent of (5) either to 
specific materials (e.g. Humphreys & Hirsch, 1968; 
Radi, 1970) or to provide an approximate param- 
eterization of the absorptive potential (Buxton & 
Loveluck, 1977; Ichimiya, 1985; Ichimiya & 
Lehmpfuhl, 1988). Here, we aim for generality by 
computing f "  at a number of selected values of s and 
M which enables accurate interpolation to be carried 
out for the wide ranges of s and M which are needed 
in practice. It is important to note that this does not 
imply that we are producing fully quantitative values 
for Vg. Our analysis is confined to the use of the 
Einstein model, and within this, the integrals and 
interpolation are performed accurately. However, the 
Einstein model neglects both electronic effects, which 
contribute to Vg at the few percent level (Radi, 1970), 
and phonon effects, which can make V~ dependent 
on orientatation as well as alter its magnitude. The 
difficulty is that all such effects will lead to absorptive 
contributions which are not transferable; the Einstein 
model might not be truly quantitative, but it does give 
rise to generally usable results. 

2. Computation 

There are two aspects to the computation of the 
integral (5b) for any values of s and M. The first is 
the evaluation of the integrand, which involves 
knowledge of the elastic form factors f'` over a 
sufficiently large range to ensure that the integral has 
converged. The second is the evaluation of the integral 
itself. We shall consider these points in turn. 

Doyle & Turner (1968) give the values off '`(s) for 
54 atoms over a range 0 <- s <- 6 A-1. We are interested 
in evaluating the absorptive form factor over a similar 
range of s values and test runs show that to achieve 
an accuracy of better than 99% it is necessary to 
extend the form factors out to s values of about 
30 A-1. The tails of the form factors do not make a 
particularly large contribution to the final result, but 
they are included to make it as accurate as possible. 
Tails are added to the tabulated form factors by 
assuming that, at large s, f'` has a Lorentzian form 

f~(s) = 0.0239 Z,,/(s2+aK), (7) 
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where ZK is the atomic number  of species K and aK 
is a fitting parameter. The constant in (7) arises from 
the condition that as s - ,oo  the form factors just 
represent Fourier transforms of  the nuclear Coulomb 
potential. The a ,  are determined in one of  two ways. 
(i) A cubic spline fit (using subroutines E 0 1 B A F  and 
EO2BBF of the NAG mathematical library) is used 
on the raw Doyle & Turner (1968) values to provide 
both the value of f~ and its derivative df,,/ds for 
any s. The range of s between 3.5 and 6/~-1 is then 
scanned to see if a value, So, can be found at which, 
for some a , ,  both fK and df,,/ds match the value and 
derivative of  (7). If so, this value of a~ is used in (7) 
to generate f ,  for s > So. For 0-< s -< So, the value from 
the spline fit is used. This procedure provides a tail 
which has the correct functional form at large s and 
which fits smoothly onto the tabulated function. (ii) 
In some cases this procedure did not provide a match- 
ing point within the desired range. In this case a ,  
was determined simply by matching the tabulated f~ 
to the limiting form (7) at s = 5/~-1. Equation (7) is 
then used for s > 5, and the spline fit for s - 5 .  The 
match here will be less smooth, but as the tails do 
not make a particularly large contribution to the 
whole integral, this will not introduce a significant 
error. 

With the integral written in the symmetrical form 
(5b) it is clear that the integrand has two mirror planes 
in the two-dimensional s' plane, parallel and perpen- 
dicular to s. It is therefore necessary only to evaluate 
the integral in one quadrant  of  the s' plane. The form 
of the  integrand for Ga is shown in Fig. 1 for a number  
of  values of s and M. Values o f f ,  are obtained either 
from a cubic spline fit or the analytical tail (7) as 
discussed above. The shape of  the integrand is similar 
for other atomic species. When Radi (1970) evaluated 
the integral he at tempted to perform the azimuthal 
integration analytically. Unfortunately he did this 
incorrectly (Buxton, private communication),  
because in his contour integration he writes cos 8 = 
( z +  z*)/2 [instead of the correct cos 0 = (z + z-1)/2] 
which is invalid because the complex conjugate z* is 
not an analytical function of  z. We have not at tempted 
to correct Radi 's method, because with modern high- 
speed computers there is little difficulty in performing 
the full two-dimensional integral many times for 
different values of  s and M. We use the general- 
purpose two-dimensional integrating subroutine 
D01 DAF of the  NAG library to perform the integrals. 
As can be seen from (5b) and Fig. 1, the integrand 
passes through zero on the circle s' I = Is/21. At this 
point the integrand can be rapidly varying, which 
may cause problems in the integrating routine. To 
circumvent this, we split the integral into two parts 
0 - I s  l - Is /21 and ]s/21-< Is 1 -  30 A- l ,  where, as men- 
tioned above, the upper limit ensures convergence to 
better than 99%. With this division, no problem is 
encountered in the integration, and a relative 

...J 

(a) 

(b) 

(c) 

(d) 

Fig. 1. The integrand of (5b) for Ga. (a) s=0.0, M=0.7; (b) 
s = 0.5, M = 0.7; (c) s = 1.5, M = 0.7; (d) s = 0.5, M = 2.0. The 
edge of the disc corresponds to Is'l = 2 ~,-'. An angular cut of 
80* is used to show the 'inside' of the function. 
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Table 1. The elastic (real) and absorptive (abs.) potential coefficients forfourfc.c,  metals at an accelerating 
voltage of 100 kV 

F o r  c o m p a r i s o n ,  t he  resu l t s  o f  R a d i  (1970) a n d  B u x t o n  & L o v e l u c k  (1977) a r e  a l s o  s h o w n .  T h e r m a l  v i b r a t i o n  a m p l i t u d e s  a n d  l a t t i ce  
p a r a m e t e r s  a r e  the  s a m e  as  t h o s e  u s e d  b y  R a d i  (1970).  

Al  C u  
G Rea l  Abs .  R a d i  B + L Rea l  Abs .  R a d i  B + L 

000 17.112 0.164 0.162 0.150 22.807 0.742 0.746 0.659 
111 6.141 0.145 0-149 0.132 11.752 0.679 0.708 0-599 
200 5.113 0.140 0.144 0.127 10.545 0.660 0.696 0.580 
220 3.228 0.122 0.129 0.110 7.767 0-592 0.641 0.515 
311 2.619 0.112 0.119 0.100 6.573 0.547 0-602 0.472 
222 2.476 0.109 0.115 0.097 6.257 0.533 0.585 0.458 
400 2.060 0.097 0.104 0.086 5.257 0.482 0.535 0.410 
331 1.843 0.089 0.097 0.078 4.697 0.448 0-500 0.377 
442 1-579 0.078 0.085 0-068 3.986 0.397 0-446 0.329 
440 1"293 0"064 0"070 0"054 3"204 0-330 0"375 0"266 
620 1-099 0"052 0"058 0.043 2.669 0-276 0.314 0"215 
444 0"955 0"042 0-048 0"034 2.286 0"231 0"265 0-175 
642 0"843 0"035 0"039 0"027 2"001 0"195 0"224 0"142 
733 0"725 0"026 0"030 0"020 1"706 0"154 0-179 0"105 
662 0"650 0"021 0"024 0"015 1"522 0"127 0"149 0"082 
664 0"571 0"015 0"018 0"010 1-331 0"099 0"117 0"058 
933 0"513 0"011 0"013 0"007 1-195 0"078 0"093 0"040 

A g  A u  
G Rea l  Abs .  R a d i  B +  L R e a l  Abs .  R a d i  B +  L 

000 24.462 1-308 1.344 1.166 29.827 2-859 3.042 2.495 
111 14.361 1.207 1.296 1.068 19.048 2.683 2.976 2.325 
200 12.953 1.176 1.254 1.039 17-274 2.628 2.867 2.273 
220 9-514 1.065 1.167 0.932 12-889 2.426 2.730 2.081 
311 7.992 0.992 1.094 0.862 10.960 2.290 2-589 1.952 
222 7.591 0.970 1.067 0.840 10.455 2.247 2.529 1.911 
400 6.329 0.886 0.986 0.760 8.868 2.087 2.385 1.759 
331 5.630 0.829 0.928 0.707 7.991 1.976 2.273 1.656 
422 4.758 0.746 0-842 0.628 6.895 1.809 2-109 1.499 
440 3.823 0.633 0.721 0.522 5.702 1.576 1.861 1.283 
620 3.209 0.540 0.616 0.436 4.896 i.379 1.633 1.101 
444 2.777 0.463 0-535 0-366 4-311 1-209 1-457 0-946 
642 2.456 0.399 0.462 0.307 3.864 1.062 1.289 0.813 
733 2.128 0.325 0.380 0.241 3-392 0.890 1.095 0.659 
662 1.925 0.275 0.323 0.198 3-090 0.771 0-952 0-555 
664 1-714 0.221 0.263 0.151 2.766 0.637 0.801 0.438 
933 1.562 0.180 0.215 0.116 2.526 0-534 0-673 0.350 

accuracy of better than 10 -4 is obtained with typically 
1000 function calls. An alternative approach to the 
evaluation of the integral was taken by Buxton & 
Loveluck (1977). They used Doyle & Turner's (1968) 
parameterization of the elastic form factors in terms 
of a sum of four Gaussians to perform the integral 
analytically. However, this parameterization is valid 
only for s < 2 ~-1,  so the influence of the tails of the 
form factors will be seriously underestimated. 
Nevertheless, comparison of their results with our 
'exact' integration provides a useful measure of the 
relative contributions of different parts of the 
integrand. 

3. Interpolation 

For any given material it is possible to evaluate (5b) 
at the relevant values of s and construct the absorptive 
potential as in (6). This has been done for a number 
of elements to compare our results with those of Radi 
(1970) and Buxton & Loveluck (1977). The results 
are presented in Table 1. The Debye-Waller factors 

used are the same as those of Radi. Our results are 
similar to his, which is surprising given that his 
azimuthal integration is performed incorrectly. Table 
1 also shows that the Buxton & Loveluck (1977) 
parameterization of f '~(s) does not provide a par- 
ticularly good approximation to the full integral, 
particularly for large g. Further discussion on the 
absorptive potential, including its ratio to the elastic 
potential, its variation with g and its temperature 
dependence may be found in the following paper 
(Bird, 1990). 

However, the primary purpose of this work is not 
to calculate the absorptive potential for certain special 
cases, but to provide the means of constructing it for 
any material. To this end, we have attempted to find 
a grid of s and M values on which f "  may be calcu- 
lated using (5b) and from which it can be evaluated 
for any s and M by interpolation. For ease of use it 
is clear that the number of grid points required to do 
this must be kept as small as possible, while keeping 
the desired accuracy in the interpolation scheme. It 
is therefore important to work with the smoothest 
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Table 2. Grids of f ' / f ~  for light (C), medium (Ga) 
and heavy (Au) atoms 

Results are expressed as percentages. These are the values used in 
the polynomial interpolation. 

Element: C 
M 0.05 0.15 

Ms 2 

0"000 0"05 0"11 
0.005 0.13 0.17 
0-025 0.41 0.39 
0.070 0.81 0.79 
0"200 1"42 1"45 
0.500 1.88 2.04 
1"200 1"32 1"70 
2"000 -0-95 -0"42 
3"500 -9"38 -8 .84  
6.000 -43.25 -42.63 

Element: Ga 
M 0.05 0.15 

M s  2 

0.000 0.35 0.73 
0"005 0"98 1"30 
0.025 2.13 2.52 
0"070 3"99 4"06 
0.200 7.28 7.03 
0"500 10"01 10"25 
1.200 8"03 9.21 
2-000 -2 .48  0"35 
3"500 -43"31 -36"40 
6.000 -208.56 -190.34 

Element: Au 
M 0.05 0.15 

M s  2 

0.000 1.24 2.53 
0"005 2.56 3"55 
0.025 5.79 6.38 
0"070 10"24 10"68 
0.200 18.16 17.79 
0.500 25.77 25.46 
1.200 21.97 24.75 
2"000 -2"28 5.17 
3.500 -99.82 -79.18 
6 .000 -505.29 -440.53 

0.30 0.70 1.30 2.00 

0"18 0"32 0"46 0"59 
0"23 0"35 0"49 0"61 
0"40 0.48 0"58 0"68 
0"75 0.74 0.78 0"85 
1"42 1"31 1"26 1"25 
2"05 1"98 1"88 1"82 
1"83 1"94 1"95 1"93 
0"09 0"49 0"68 0"79 

-7"05 -5"85 -4-94 -4-50 
-39"54 -32"75 -29.67 -27"81 

0"30 0-70 1-30 2"00 

1" 12 1"78 2.37 2.83 
1"60 2"12 2"62 3"02 
2.84 3"20 3"49 3"72 
4"34 4.74 4"91 4"98 
6"89 7.06 7.22 7"23 

10"04 9"71 9-65 9"64 
9"86 10"41 10"71 10"91 
2"30 4-69 6.64 7.98 

-30"36 -28"83 -16-37 -11"13 
-172-11 -144"76 -126-54 -108"31 

0"30 0"70 1 "30 2"00 

3"74 5.72 7.42 8"69 
4"57 6"27 7"81 8"99 
6"97 8"08 9"18 10-06 

10"82 11"16 11"62 12"08 
17"77 17"20 16"63 16"33 
25.03 24.57 23 "46 22"48 
25"99 27" 17 27"67 27"36 
10"27 16"62 20"75 22"82 

-62"68 -41"23 -23"18 -12"06 
-387"83 -312"54 -252"30 -199"60 

accuracy of better than 2% for the lower M s  2 values 
(~<2.0) and better than 6% for the less-significant 
h i g h e r  M s  2 values (between about 2.0 and 6.0) over 
the whole range of values 0 < - M-< 2/~2 and for all 
atomic species. These ranges were chosen to cover 
all the values which are likely to be found in practice. 
Because we tabulate the ratio f 'JfK it is necessary to 
know fK in order to find f~  - this is obtained from 
cubic interpolation of the Doyle & Turner (1968) 
values. This also provides a further restriction that s 
inf'~ must be less than 6 A-I.  We emphasize that the 
2-6% error here is only the relative error between the 
interpolated values and the full integration of (5b). 
It should not be taken to imply that the resulting 
absorptive potential coefficients (which, as discussed 
in the Introduction, ignore phonon and electronic- 
scattering effects) have this absolute accuracy. Given 
all the uncertainties in the basis of the calculations; 
this accuracy in the interpolation is more than 
adequate. The grid (8) gives a significantly higher 
percentage error only near the range of values where 
f "  goes through zero (e.g. Humphreys & Hirsch, 
1968). For most species, this occurs n e a r  M s  2"-  2"0 
(see Table 2) and although the percentage error can 
become quite large, the absolute error remains small 
because f'~ is itself very small. 

A two-dimensional polynomial interpolation pro- 
cedure is used to obtain f "  values from the computed 
grid (see, for example, Press, Flannery, Teukolsky & 
Vetterling, 1986). A bi-cubic interpolation is illus- 
trated in Fig. 2. It involves five one-dimensional cubic 

0 0 x(z, y4) EE EE 

possible functions. Two refinements help here. First, 
we work with the ratio f ' ( s ,  M)/ f i ( s )  rather than the 
raw f "  values as it is smoother, particularly for the 
more significant smaller values of s (e.g. Humphreys 

& Hirsch, 1968; Radi, 1970). Second, we work with 
an (Ms 2, M) grid rather than the simpler (s, M) grid. 
Again, this provides a smoother function for interpo- 
lation and prevents the inclusion of large Ms 2 values 
for which the exp ( - M s  2) factor in (6) makes the 
potential coefficient extremely small, After extensive 
testing we settled on a grid with the values 

Ms 2= 0.0, 0.005, 0.025, 0.07, 0.2, 

0.5, 1.2, 2.0, 3.5, 6.0, (8) 

M =0.05, 0.15, 0.3, 0.7, 1.3, 2 . 0 ~  2. 

M = 0 is not included because f "  is zero there. For 
each element, 60 values o f f "  must therefore be calcu- 
lated; three examples are given in Table 2. With a 
two-dimensional polynomial interpolation procedure 
(see below) this grid nearly always provides f "  to an 

0 0 x(x, ya) EE 0 

.(x,y) 

CO DEE x(z, y2) (3 EE 

A® BEE x(x, yl) EE EE 
X ----~ 

Fig. 2. The two-dimensional cubic interpolation procedure. The 
function is known on the grid points EE. To determine its value 
at (x, y) we use equation (9) on the constant y lines to'evaluate 
it at the points (x, y~), i=  1, 2, 3, 4. A fifth one-dimensional 
interpolation is then used on these four points. The same method 
works at the edge of the grid, but is less accurate because (x, y) 
does not lie in the centre of the nine rectangles. In the case of 
a bi-quadratic interpolation there are four possible choices of 
nine grid points, corresponding to the bottom left of the 3 x 3 
array being points A, B, C, D respectively. 
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interpolations, for which a function h(x) at any point 
x is given by 

( X - -  X 2 ) ( X  - -  X 3 ) ( X  --  X4) 
h ( x )  = h ( x , )  

( x  1 - x 2 ) ( x  I - x 3 ) ( x  1 - x 4 )  

( X -  X I ) ( X -  X 3 ) ( X -  X4)  
+ h(x2) 

( X  2 - -  X I ) ( X  2 - -  X 3 ) ( X  2 - -  X4) 

(X--X1)(X--X2)(X--X4) 
-t h(x3) 

(X3 - -  X l )  ( x 3  - -  X2)  ( x 3  - -  X4)  

(x-x,)(x-x2)(x-x3) 
+ h(x4), 

( X  4 - -  X l ) ( X  4 - -  X2)  ( x  4 - -  X3)  
(9) 

where the xi are the grid points nearest to x (Fig. 2). 
A similar procedure is possible for quadratic interpo- 
lation; there is a slight problem here in that four 
possible two-dimensional quadratic interpolations 
can be carried out for any point (x, y) (Fig. 2). It is 
also of course possible to mix different orders of 
polynomial in the different directions. The best inter- 
polation procedure was found using trial and error 
by comparing the various possible schemes with the 
results from the exact integration over a wide range 
of M and s values. Quadratic interpolation was found 
to be best for values of M s  2 up to 2"0 while cubic 
interpolation is more accurate for 2.0 < - Ms2<-6.0. 
Perhaps surprisingly, where quadratic or cubic inter- 
polation works best in the M s  2 direction, the same 
order of polynomial also gives the best fit in the M 
direction. We therefore use bi-quadratic interpolation 
for 0<- Ms2<2 and bi-cubic interpolation for 2<- 
Ms2<- 6. For the quadratic interpolations, the four 
possible results (or fewer, for points near the edge of 
the grid) are averaged to produce the final result. This 
interpolation scheme is straightforward to implement, 
and the final number of data points needed for each 
atom becomes 27 Doyle & Turner (1968) values for 
f~ and 60 computed values of f ' / f ~ .  We also need 
the grid points (8) and the s values used by Doyle & 
Turner, but these are the same for every atom. This 
relatively small amount of data makes it quite feasible 
to distribute generally usable values for both the 
elastic and absorptive form factors. 

4. Subroutine A T O M  

We have chosen to distribute our results in the form 
of a Fortran subroutine which, when given the name 
of an atom, the value of s, the temperature factor and 
the accelerating voltage will return the elastic and 
absorptive form factors multipled by the Debye- 
Waller factor exp (-M~s2). These can then be com- 
bined to form overall potential coefficients using (6). 
The accelerating voltage is involved because f "  
depends on/3 - the form factors do not include the 
extra factor of y which is discussed after (6). The 
subroutine contains all the data required for interpo- 

lation in the form of DATA statements, so no external 
file handling is required. This makes the subroutine 
rather lengthy both in its source form and when 
compiled, so every effort has been made to minimize 
its size. As part of this, we store values of 
f ' ( s ,  M) exp (-Ms2)/ f~(s)  (rather than the f ' / f  
values which are used for interpolation) to reduce 
the magnitude of the larger Ms 2 points (Table 2). The 
resulting flattened data are then scaled with additive 
and multiplicative factors to make it fit into the range 
0 to 999. All the data can then be stored to sufficient 
accuracy with only three significant figures. This flat- 
tening enhances the accuracy with which the majority 
of points are stored, at the expense of a small degrada- 
tion for the less-significant higher Ms 2 values. Poly- 
nomial fits were also tried on the flattened data, but 
these required considerably more data for an equally 
good fit. The interpolation routine is included in the 
subroutine, so it is fully self-contained. It is written 
in standard Fortran 77 and has been tested running 
under several different operating systems. The 
specification of the subroutine is shown in Fig. 3. At 
present it contains all the elements which appear in 
Doyle & Turner (1968); later versions will be extended 
to cover all atoms. The size of the source code is 
45 kbyte. 

Subroutine ATOM will be made freely available 
both via electronic mail and on floppy disk. There 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C ................ ATOM - Atomic Form Factors Subroutine ............. 

C ...................................................................... 

C 

C CALL ATOM( ELNAME, M, S, KVOLTS, FE, FA, STATUS ) 
C 
C In:ELNAME - CH*2 - Element name (upper case only) 
C M - D.P. - 8.(pi^2).u^2; u^2 = mean square atomic vibration 

C S - D.P. - Scattering vector (as in Doyle and Turner) 

C KVOLTS - D.P. - Accelerating voltage in KVolts 

C STATUS - INT. - Error control 

C 

C Out: FE - D.P. - Elastic part of atomic form factor * exp(-Ms^2) 

C FA - D.P. - Imag part of form factor (inc. I/beta) * exp(-Ms^2) 

C STATUS - INT. - Returned status 

C 

C Note: If Ms^2 > 6.0 or s > 5.0 both FE and FA return O.ODO 

C If M < 0.05 then FA returns O.ODO 

C 

C ELNAME: Element name, in upper case, left justified, 

C e.g.  'GA', 'AS', 'S *, 'P ' 

C 

C KVOLTS: Accelerating voltage in KeV 
C If KVOLTS = O.ODO, BETA is taken as I 

C 

C STATUS: If STATUS is passed with a negative value, then should an 

C error occur, the subroutine will write the relevent error 

C message to unit -STATUS and execution will be terminated. 

C If STATUS is positive, a code number is returned in STATUS 

C and even if an error has occured, execution will not be 

C terminated. The codes are: 

C 

C 0 - Successful 

C I - Unknown element 

C 2 - M out of range (M < 0 or M > 2) 

C 3 - S less than zero 

C 4 - KVOLTS out of range (KVOLTS < 0.0 or KVOLTS > 10.^4) 

C 

C ...................................................................... 

Fig. 3. The specification of subroutine ATOM. 
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will be no charge for electronic mail distribution - 
contact should be made with D.Bird@uk.ac.bath.gdr. 
Distribution by floppy disc will be in the form of 5¼ in 
discs on PCs running under DOS. In this case there 
will be a handling charge of US $20. 

5. Discussion 

Subroutine A T O M  provides a simple means of con- 
structing elastic and absorptive potentials from 
individual atomic contributions. How useful are the 
results likely to be? For the elastic potential, the use 
of atomic potentials is known to be an excellent 
approximation. Even for the lower-order Vg, where 
effects due to bonding can be observed, the difference 
between the actual and neutral-atom potential 
coefficients is very small (e.g. Zuo, Spence & O'Keeffe, 
1988). For the absorptive potential, the use of atomic 
potentials is certain to be a poorer approximation, 
but it is very difficult to be quantitative about this. It 
also has to be recognized that TDS is only one contri- 
bution to Vg, and that the use of isotropic Debye- 
Waller factors introduces further inaccuracy. (The 
question of what is the best average Debye-Waller 
factor to use in any given situation when working 
with anisotropic crystals is rather difficult and we do 
not attempt to address it here). Our view is that the 
calculations presented here are about the best that 
can be done in a general fashion. We expect that they 
will reliably reflect trends in the absorptive potential 
as a function of s and M, and will show the correct 
behaviour of the ratio of elastic to absorptive potential 
for light and heavy atoms. In this way our results 
should provide a much better guide to the form of 
the absorptive potential than any ad hoc rule. Given 

that they can be incorporated into diffraction calcula- 
tions in a very straightforward way, we suggest that 
they should be used, if only to see whether the 
inclusion of absorption in a rather more rigorous 
fashion makes any significant difference to the final 
results. 
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Abstract 

The influence of absorptive potentials on high-energy 
electron diffraction amplitudes is analysed, with an 
emphasis on effects which are specific to diffraction 
from non-centrosymmetric crystals. It is shown that 
the phase difference which then exists between the 
elastic and absorptive potential coefficients can give 
rise to a significant asy.mmetry between +g and - g  

reflections. This phase difference is calculated for a 
number of important III-V semiconductors. In many 
diffraction calculations it is assumed that the phase 
difference is zero - it is argued here that such calcula- 
tions cannot be truly quantitative. The inclusion of 
absorption by perturbation theory is shown to be 
valid, but only if the change in the eigenvectors as 
well as the eigenvalues is taken into account. It is 
shown that within two-beam theory the +g, - g  
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